A pairwise likelihood augmented Cox estimator for left-truncated data.

نویسندگان

  • Fan Wu
  • Sehee Kim
  • Jing Qin
  • Rajiv Saran
  • Yi Li
چکیده

Survival data collected from a prevalent cohort are subject to left truncation and the analysis is challenging. Conditional approaches for left-truncated data could be inefficient as they ignore the information in the marginal likelihood of the truncation times. Length-biased sampling methods may improve the estimation efficiency but only when the underlying truncation time is uniform; otherwise, they may generate biased estimates. We propose a semiparametric method for left-truncated data under the Cox model with no parametric distributional assumption about the truncation times. Our approach is to make inference based on the conditional likelihood augmented with a pairwise likelihood, which eliminates the truncation distribution, yet retains the information about the regression coefficients and the baseline hazard function in the marginal likelihood. An iterative algorithm is provided to solve for the regression coefficients and the baseline hazard function simultaneously. By empirical process and U-process theories, it has been shown that the proposed estimator is consistent and asymptotically normal with a closed-form consistent variance estimator. Simulation studies show substantial efficiency gain of our estimator in both the regression coefficients and the cumulative baseline hazard function over the conditional approach estimator. When the uniform truncation assumption holds, our estimator enjoys smaller biases and efficiency comparable to that of the full maximum likelihood estimator. An application to the analysis of a chronic kidney disease cohort study illustrates the utility of the method.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Asymptotic Behaviors of Nearest Neighbor Kernel Density Estimator in Left-truncated Data

Kernel density estimators are the basic tools for density estimation in non-parametric statistics.  The k-nearest neighbor kernel estimators represent a special form of kernel density estimators, in  which  the  bandwidth  is varied depending on the location of the sample points. In this paper‎, we  initially introduce the k-nearest neighbor kernel density estimator in the random left-truncatio...

متن کامل

Strong Convergence Rates of the Product-limit Estimator for Left Truncated and Right Censored Data under Association

Non-parametric estimation of a survival function from left truncated data subject to right censoring has been extensively studied in the literature. It is commonly assumed in such studies that the lifetime variables are a sample of independent and identically distributed random variables from the target population. This assumption is often prone to failure in practical studies. For instance, wh...

متن کامل

PHMPL: a computer program for hazard estimation using a penalized likelihood method with interval-censored and left-truncated data.

The Cox model is the model of choice when analyzing right-censored and possibly left-truncated survival data. The present paper proposes a program to estimate the hazard function in a proportional hazards model and also to treat more complex observation schemes involving general censored and left-truncated data. The hazard function estimator is defined non-parametrically as the function which m...

متن کامل

A Note on the Smooth Estimator of the Quantile Function with Left-Truncated Data

This note focuses on estimating the quantile function based on the kernel smooth estimator under a truncated dependent model. The Bahadurtype representation of the kernel smooth estimator is established, and from the Bahadur representation it can be seen that this estimator is strongly consistent.

متن کامل

Asymptotic Behaviors of the Lorenz Curve for Left Truncated and Dependent Data

The purpose of this paper is to provide some asymptotic results for nonparametric estimator of the Lorenz curve and Lorenz process for the case in which data are assumed to be strong mixing subject to random left truncation. First, we show that nonparametric estimator of the Lorenz curve is uniformly strongly consistent for the associated Lorenz curve. Also, a strong Gaussian approximation for ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biometrics

دوره 74 1  شماره 

صفحات  -

تاریخ انتشار 2018